Moment Distribution

This is an alternative method to the slope-deflection method for analysing statically indeterminate planeframe structures

The method is suitable for frame elements, where the principal deflection effects are caused by bending rather than shear or axial loading

The method makes use of the Principle of Superposition, fixed end moments and the slope-deflection equations

It is an iterative process that converges on an equilibrium solution...easier for hand calculations than the slope-deflection method

Moment Distribution

Consider a simple 2-span beam
First fully fix the ends of members $A B$ and $B C$ and apply the loading.

A

C

Hence find the fixed-end moments

Moment Distribution

A

B
C

Joint B in this example wants to rotate in a clockwise direction but cannot.

Joint B is not in equilibrium. $M_{B A}=0$ but $M_{B C}=M_{F B C}$.
The joint is out of balance

Moment Distribution

A

C

If we now release the fixity at Joint B and allow it to rotate then equilibrium is restored at this joint. The joint is balanced.

However this rotation now causes additional moments to the transferred to joints A and C, which are still fixed.

These moments are known as carry-over moments
The beam is still not in equilibrium... joint A and joint C would both like to rotate anti-clockwise, but cannot because they are fixed.

Moment Distribution

A

C

If we now fix joint B, and allow rotations at joints A \& C (not the same rotation)
Then new carry-over moments are transferred back to joint B

If the moments at joint B do not balance each other, then we must again fix joints A \& C and allow joint B to rotate. We continue with this and the carry-over moments will get smaller and smaller with each rotation until equilibrium is restored throughout

Moment Distribution

Stiffness, carry-over moments and distribution factors

When a joint is released and allowed to rotate, the out of balance moment must be shared between the members on each side of the joint according to the bending stiffness of each member. If we force a positive (anticlockwise) rotation θ_{A}.

$$
M_{D A B}=\frac{4 E I \theta_{A}}{L_{A B}}
$$

$$
M_{D B A}=\frac{2 E I \theta_{A}}{L_{A B}}
$$

Moment Distribution

When joint B rotates by an angle θ_{B}, there are moments induced in $A B$ and $B C$ at B according to the bending stiffnesses of $A B \& B C$.

These are known as the balancing moments

$$
M_{D B A}=\frac{4 E I \theta_{B}}{L_{A B}}
$$

$$
M_{D B C}=\frac{4 E I \theta_{B}}{L_{B C}}
$$

Moment Distribution

Thus equilibrium is restored to an out of balance joint by rotating the joint and adding moments to either side of the joint according to the rotational stiffness of the member on each side.

For constant El
Distribution factor

Moment Distribution

Half of the balancing moment is carried over to the joint at the other end of the member

$$
M_{D A B}=\frac{M_{D B A}}{2}
$$

$$
M_{D C B}=\frac{M_{D B C}}{2}
$$

Moment Distribution

So ... now we are ready to try a numerical example:

Fixed end moments:
$\mathrm{M}_{\mathrm{FAB}}=\mathrm{PL} / 8=3.75 \mathrm{kNm}$
$M_{\text {FBC }}=w L^{2 / 12}=26.7 \mathrm{kNm}$
$\mathrm{M}_{\text {FBA }}=-3.75 \mathrm{kNm}$
$M_{\text {FCB }}=-26.7 \mathrm{kNm}$

Distribution factors:

$$
D F_{B A}=\frac{1 / 3}{1 / 3+1 / 4}=0.57
$$

$$
D F_{B C}=\frac{1 / 4}{1 / 3+1 / 4}=0.43
$$

Moment Distribution

Carry out calculations using a moment distribution table

Moment Distribution

Carry out calculations using a moment distribution table

Moment Distribution

Moment Distribution

Moment Distribution

DF	A	B		C
		0.57	0.43	
	M_{AB}	M ${ }_{\text {BA }}$	M_{BC}	M_{CB}
$\begin{aligned} & \text { FEM } \\ & \text { Bal } \end{aligned}$	3.75	$\begin{aligned} & \hline-3.75 \\ & -13.1 \end{aligned}$	$\begin{gathered} 26.7 \\ -9.9 \end{gathered}$	-26.7
CO	6.6			-5.0
Total	-2.9	-16.9	16.8	-31.7

Moment Distribution

So ... what happens if we replace the fixed support at A with a pinned support?

Fixed end moments:
$\mathrm{M}_{\text {FAB }}=\mathrm{PL} / 8=3.75 \mathrm{kNm}$
$M_{\text {FBC }}=w L 2 / 12=26.7 \mathrm{kNm}$
Distribution factors:
$D F_{B A}=\frac{1 / 3}{1 / 3+1 / 4}=0.57$
$D F_{B C}=\frac{1 / 4}{1 / 3+1 / 4}=0.43$

Moment Distribution

Moment Distribution

Moment Distribution

Moment Distribution

Moment Distribution

DF	Pinned A	B		$\begin{gathered} \text { Fixed } \\ \mathrm{C} \\ 1 \\ \mathrm{M}_{\mathrm{CB}} \end{gathered}$
	1	0.57	0.43	
	$M_{\text {AB }}$	M_{BA}	$\mathrm{M}_{\text {BC }}$	
FEM	3.75	-3.75	26.7	-26.7
Bal	-3.75	-13.1	-9.9	
Bal	6.6	1.		5.0
Bal	6.6	1.1	0.8	
O	0.6			0.4
Bal	-0.6	- 1.9	- 1.4	
CO	1.0	0.3		-0.7
Bal	1.0	0.2	0.1	
Bal		0.5		
Bal		- 0.3	-0.2	
Total	0	- 16.2	16.1	-32.0

Moment Distribution

You can see that the pin end at A causes a very slow convergence. We can improve on this situation.
Consider a beam $A B$ with a rotation at A and B is pinned.

First we fully fix B and impose a rotation at A

Moment Distribution

You can see that the pin end at A causes a very slow convergence. We can improve on this situation.
Consider a beam $A B$ with a rotation at A and B is pinned.

First we fully fix B and impose a rotation at A

$$
M_{D A B}=4 E I \theta_{A} / L \quad \longrightarrow \quad M_{D B A}=2 E I \theta_{A} / L
$$

Moment Distribution

You can see that the pin end at A causes a very slow convergence. We can improve on this situation.
Consider a beam $A B$ with a rotation at A and B is pinned.

Now fully fix A and impose a balancing moment at B

$$
M_{D A B}=4 E I \theta_{A} / L \quad \longrightarrow \quad M_{D B A}=2 E I \theta_{A} / L
$$

Moment Distribution

You can see that the pin end at A causes a very slow convergence.
Consider a beam $A B$ with a rotation at A and B is pinned.

Now fully fix A and impose a balancing moment at B

$$
\begin{array}{cc}
M_{D A B}=4 E I \theta_{A} / L \\
M_{D A B}=-E I \theta_{A} / L \\
M_{D A B}=3 E I \theta_{A} / L
\end{array} \quad \frac{M_{D B A}=2 E I \theta_{A} / L}{} \quad \begin{aligned}
& M_{D B A}=-2 E I \theta_{A} / L \\
& M_{D B A}=0
\end{aligned}
$$

Moment Distribution

So ... if we replace the 4EI/L stiffness of a pin support member with $3 E I / L$ and have a zero carry-over factor, the end result is the same.
Try this with the same problem as before:

Moment Distribution

Distribution factors:

$$
\begin{aligned}
& D F_{B A}=\frac{3 E I / L_{A B}}{3 E I / L_{A B}+4 E I / L_{B C}}
\end{aligned}=\frac{3 / 4 \times 3}{3 / 4 \times 3+1 / 4}=0.5
$$

Moment Distribution

Moment Distribution

This is the same result as before.

Moment Distribution

DF	Pinned A	B		$\begin{gathered} \text { Fixed } \\ \mathrm{C} \\ 1 \\ \mathrm{M}_{\mathrm{CB}} \end{gathered}$
	1	0.57	0.43	
	$M_{\text {AB }}$	M_{BA}	$\mathrm{M}_{\text {BC }}$	
FEM	3.75	-3.75	26.7	-26.7
Bal	-3.75	-13.1	-9.9	
Bal	6.6	1.		5.0
Bal	6.6	1.1	0.8	
O	0.6			0.4
Bal	-0.6	- 1.9	- 1.4	
CO	1.0	0.3		-0.7
Bal	1.0	0.2	0.1	
Bal		0.5		
Bal		- 0.3	-0.2	
Total	0	- 16.2	16.1	-32.0

Moment Distribution

