Biaxial bending of asymmetric section

Define +ve M_{x} as causing +ve tensile stresses when y is +ve
Define +ve M_{y} as causing +ve tensile stresses when x is +ve

Biaxial bending of asymmetric section

What happens if we try and bend an asymmetric section without applying the load at the shear centre?

For the case of biaxial bending of symmetric section:
+ve M_{y} gives +ve tension on + ve X side of section

$$
\sigma_{z}=\frac{M_{x} y}{I_{x x}}+\frac{M_{y} x}{I_{y y}}
$$

+ve M_{x} gives +ve tension on + ve Y side of section

Biaxial bending of asymmetric section

What happens if we try and apply the same equation to an asymmetric section for a moment M_{x} ?

Biaxial bending of asymmetric section

Now apply a hogging (positive) bending moment of
$M_{x}=10 \mathrm{kN} \cdot \mathrm{m}=10 \times 10^{6} \mathrm{~N} . \mathrm{mm}$

Biaxial bending of asymmetric section

$$
\sigma_{z}=\frac{M_{x} y}{I_{x x}}+\frac{M_{y} x^{x}}{I_{y y}}=0.105 \mathrm{y} \mathrm{N.mm}^{-3}
$$

The average stress in the top flange at $\mathrm{y}=144 \mathrm{~mm}$ is $\sigma_{\mathrm{z}}=15 \mathrm{~N} / \mathrm{mm}^{2}$ (tension positive)

Similarly the average stress in the bottom flange at $y=-144 \mathrm{~mm}$
is $\sigma_{\mathrm{z}}=-15 \mathrm{~N} / \mathrm{mm}^{2}$ (compression negative)

Biaxial bending of asymmetric section

The forces in the flanges result in horizontal forces that are laterally out of alignment.
This result in a lateral bending moment about the $\mathrm{Y}-\mathrm{Y}$ axis... and yet there is no external M_{y} moment applied !
Although only M_{x} is applied, the section must bend about Y-Y

Biaxial bending of asymmetric section

General expression for bending stress

For simple bending M_{x} of a section symmetric about the $Y-Y$ axis, axial displacement at any section (in the Z direction) is given by:

$$
u=C y
$$

and the axial strain is given by:

$$
\varepsilon_{z}=\frac{d u}{d z}
$$

Biaxial bending of asymmetric section

General expression for bending stress
For an asymmetric section, we must replace this function for u by a more general expression:

$$
\begin{gathered}
u=C_{1} y+C_{2} x \\
\text { now } \varepsilon_{z}=\frac{d u}{d z}=C_{1}^{\prime} y+C_{2}^{\prime} x \\
\text { where } C_{1}^{\prime}=d C_{1} / d z \quad \text { and } C_{2}^{\prime}=d C_{2} / d z
\end{gathered}
$$

Note: $\sigma_{z}=E \varepsilon_{z}$

$$
\text { hence } \sigma_{z}=E \cdot C_{1}^{\prime} \cdot y+E \cdot C_{2}^{\prime} \cdot x
$$

Biaxial bending of asymmetric section

Moment about the x axis $=\mathrm{M}_{\mathrm{x}}$

$$
M_{x}=\int \sigma_{z} y d A=E C_{1}^{\prime} \int y^{2} d A+E C_{2}^{\prime} \int x y d A
$$

Moment about the y axis $=\mathrm{M}_{\mathrm{y}}$

$$
M_{y}=\int \sigma_{z} x d A=E C_{1}^{\prime} \int x y d A+E C_{2}^{\prime} \int x^{2} d A
$$

Biaxial bending of asymmetric section

Define :
$\int y^{2} d A=I_{x x} \quad=$ second moment of area about the x axis
$\int x^{2} d A=I_{y y} \quad=$ second moment of area about the y axis
$\int x y \mathrm{dA}=I_{x y}=\begin{aligned} & \text { cross second moment of area } \\ & \text { about the } x-y \text { axes }\end{aligned}$
$I_{x y}$ is also known as the product moment of area

Biaxial bending of asymmetric section

Hence:

$$
\begin{aligned}
& M_{x}=E C_{1}^{\prime} I_{x x}+E C_{2}^{\prime} I_{x y} \\
& M_{y}=E C_{1}^{\prime} I_{x y}+E C_{2}^{\prime} I_{y y}
\end{aligned}
$$

Solving for $\mathrm{C}_{1}{ }^{\prime}$ and $\mathrm{C}_{2}{ }^{\prime}$ gives:

$$
\begin{aligned}
& E C_{1}^{\prime}=\frac{\left(M_{x} I_{y y}-M_{y} I_{x y}\right)}{\left(I_{y y} I_{x x}-I_{x y}{ }^{2}\right)} \\
& E C_{2}^{\prime}=\frac{\left(-M_{x} I_{x y}+M_{y} I_{x x}\right)}{\left(I_{y y} I_{x x}-I_{x y}{ }^{2}\right)}
\end{aligned}
$$

Biaxial bending of asymmetric section

$$
\begin{gathered}
\sigma_{z}=E C_{1}^{\prime} y+E C_{2}^{\prime} \chi \\
\sigma_{z}=\frac{\left(M_{x} I_{y y}-M_{y} I_{x y}\right)}{\left(I_{y y} I_{x x}-I_{x y}{ }^{2}\right)} y+\frac{\left(-M_{x} I_{x y}+M_{y} I_{x x}\right)}{\left(I_{y y} I_{x x}-I_{x y}{ }^{2}\right)} x
\end{gathered}
$$

Note that if $\mathrm{I}_{\mathrm{xy}}=0$,

$$
\sigma_{z}=\frac{M_{x}}{I_{x x}} y+\frac{M_{y}}{I_{y y}} x
$$

This is the same formula as used for a symmetric section

Biaxial bending of asymmetric section

Why is $\mathrm{I}_{\mathrm{xy}}=0$ for a symmetric section ?

$$
\begin{gathered}
I_{x y}=\int x y d A \\
I_{x y}=\sum x_{i} y_{i} d A_{i}
\end{gathered}
$$

For every area dA_{i} with location + ve y, -ve x there is a corresponding area dA_{i} with location + ve y, +ve x
All the contributions to $\sum x_{i} y_{i} d A_{i}$ will cancel out

Biaxial bending of asymmetric section

For a section with at least one axis of symmetry about $\mathrm{X}-\mathrm{X}$ or $\mathrm{Y}-\mathrm{Y}$:

$$
I_{x y}=0
$$

Biaxial bending of asymmetric section

Example:
The L-section cantilever shown has a point load of 2.5 kN applied at the tip of the cantilever. The load is applied at the centroidal $\mathrm{Y}-\mathrm{Y}$ axis. What are the bending stresses ?

$M_{x}=5.0 \mathrm{kN} . \mathrm{m}$
(hogging +ve)

Biaxial bending of asymmetric section

Find the centroidal axes

Total area $=90 \times 5+75 \times 5=825 \mathrm{~mm}^{2}$

$$
\begin{aligned}
& \bar{y}=\frac{(90 \times 5 \times 45)+(75 \times 5 \times 2.5)}{825}=25.7 \mathrm{~mm} \\
& \bar{x}=\frac{(90 \times 5 \times 2.5)+(75 \times 5 \times 42.5)}{825}=20.7 \mathrm{~mm}
\end{aligned}
$$

Biaxial bending of asymmetric section

Now find Ixx, lyy and Ixy about the centroidal axes

$$
\begin{gathered}
I_{x x}=\frac{5 \times 90^{3}}{12}+\left(5 \times 90 \times 19.3^{2}\right)+\frac{75 \times 5^{3}}{12}+\left(5 \times 75 \times-23.2^{2}\right) \\
I_{x x}=673991 \mathrm{~mm}^{4}=6.74 \times 10^{5} \mathrm{~mm}^{4}
\end{gathered}
$$

Biaxial bending of asymmetric section

$$
I_{y y}=\frac{90 \times 5^{3}}{12}+\left(5 \times 90 \times-18.2^{2}\right)+\frac{5 \times 75^{3}}{12}+\left(5 \times 75 \times 21.8^{2}\right)
$$

Biaxial bending of asymmetric section

$$
I_{x y}=(5 \times 90 \times-18.2 \times 19.3)+(5 \times 75 \times-23.2 \times 21.8)
$$

Biaxial bending of asymmetric section

$$
\sigma_{z}=\frac{\left(M_{x} I_{y y}-M_{y} I_{x y}\right)}{\left(I_{y y} I_{x x}-I_{x y}{ }^{2}\right)} y+\frac{\left(-M_{x} I_{x y}+M_{y} I_{x x}\right)}{\left(I_{y y} I_{x x}-I_{x y}{ }^{2}\right)} x
$$

Hogging +ve, tension +ve

$$
M_{x}=5.0 \mathrm{kN} . \mathrm{m}, \mathrm{M}_{\mathrm{y}}=0
$$

Biaxial bending of asymmetric section

Top-left corner

$$
\begin{aligned}
\sigma_{z}= & \frac{\left(5 \times 10^{6} \times 5.04 \times 10^{5}\right)}{\left(5.04 \times 6.74-3.48^{2}\right) \times 10^{10}} \times 64.3 \\
& +\frac{\left(-5 \times 10^{6} \times\left[-3.45 \times 10^{5}\right]\right)}{\left(5.04 \times 6.74-3.48^{2}\right) \times 10^{10}} \times[-20.7]
\end{aligned}
$$

Biaxial bending of asymmetric section,

 Top-left corner

$$
\sigma_{z}=\frac{2.52 \times 10^{12}}{2.20 \times 10^{11}} \times 64.3+\frac{1.73 \times 10^{12}}{2.20 \times 10^{11}} \times[-20.7]
$$

$$
\sigma_{z}=738-163=575 \mathrm{~N} / \mathrm{mm}^{2}
$$

Biaxial bending of asymmetric section

Bottom-left corner

$$
\sigma_{z}=\frac{2.52 \times 10^{12}}{2.20 \times 10^{11}} \times[-25.7]+\frac{1.73 \times 10^{12}}{2.20 \times 10^{11}} \times[-20.7]
$$

$$
\sigma_{z}=-295-163=-458 \mathrm{~N} / \mathrm{mm}^{2}
$$

Biaxial bending of asymmetric section

Bottom-right corner

59.3

$$
\sigma_{z}=\frac{2.52 \times 10^{12}}{2.20 \times 10^{11}} \times[-25.7]+\frac{1.73 \times 10^{12}}{2.20 \times 10^{11}} \times 59.3
$$

$$
\sigma_{z}=-295+467=172 \mathrm{~N} / \mathrm{mm}^{2}
$$

Biaxial bending of asymmetric section

Biaxial bending of asymmetric section

Alternative method ...

Biaxial bending of asymmetric section

It can be shown that we can use the symmetric equation

$$
\sigma_{z}=\frac{M_{x}}{I_{x x}} y+\frac{M_{y}}{I_{y y}} \chi
$$

for asymmetric sections, if we replace M_{x} and M_{y} by $\overline{\mathrm{M}}_{\mathrm{x}}$ and $\overline{\mathrm{M}}_{\mathrm{y}}$, where :

$$
\begin{aligned}
& \bar{M}_{x}=\frac{M_{x}-M_{y} \times I_{x y} / I_{x x}}{1-I_{x y}^{2} /\left(I_{x x} I_{y y}\right)} \\
& \bar{M}_{y}=\frac{M_{y}-M_{x} \times I_{x y} / I_{y y}}{1-I_{x y}^{2} /\left(I_{x x} I_{y y}\right)}
\end{aligned}
$$

Biaxial bending of asymmetric section

In the example: $\quad \mathrm{M}_{\mathrm{x}}=5.0 \mathrm{kN} . \mathrm{m}, \mathrm{M}_{\mathrm{y}}=0$

$$
\begin{aligned}
& I_{x x}=6.74 \times 10^{5} \mathrm{~mm}^{4} \quad I_{y y}=5.04 \times 10^{5} \mathrm{~mm}^{4} \\
& I_{x y}=-3.48 \times 10^{5} \mathrm{~mm}^{4}
\end{aligned}
$$

$$
\begin{array}{ll}
\bar{M}_{x}=\frac{5.0}{1-[-3.48]^{2} /(6.74 \times 5.04)} & =7.77 \mathrm{kN} \cdot \mathrm{~m} \\
\bar{M}_{y}=\frac{-5.0 \times[-3.48 / 6.74]}{1-[-3.48]^{2} /(6.74 \times 5.04)} & =4.01 \mathrm{kN} . \mathrm{m}
\end{array}
$$

Note: even though the applied $\mathrm{M}_{\mathrm{y}}=0$, there is an effective bending M_{y} for an asymmetric section!

Biaxial bending of asymmetric section

$$
\sigma_{z}=\frac{\bar{M}_{x}}{I_{x x}} y+\frac{\bar{M}_{y}}{I_{y y}} x
$$

For top left corner

$$
\begin{gathered}
\sigma_{z}=\frac{7.77 \times 10^{6}}{6.74 \times 10^{5}} \times 64.3+\frac{4.01 \times 10^{6}}{5.05 \times 10^{5}} \times[-20.7] \\
\sigma_{z}=741-164
\end{gathered}
$$

Same solution as before

